Mechanisms of obesogens and their impact on adipose tissue, hormones, and inflammation
DOI:
https://doi.org/10.20883/medical.e965Keywords:
endocrine disruptors, obesity, hormone regulation, metabolic dysfunction, environmental factors, chemical exposuresAbstract
The complex interactions of genetic, environmental, and behavioral factors that contribute to obesity, a pervasive global health issue, continue to be a severe concern for people all over the world. This manuscript examines the field of obesogen research, seeking to understand the mechanisms by which certain environmental chemicals contribute to the development of obesity. We explore the obesogenic effects by focusing on pathways such as inflammation, hormone interference, and the activation of peroxisome proliferator-activated receptors (PPARs). The text focuses on the significance of PPAR isoforms, especially PPARγ, and how they play a role in adipose tissue growth. We examine how obesogens such as tributyltin (TBT) and bisphenol A (BPA) influence these receptors. Additionally, we examined the impact of obesogens on hormonal regulation, including disruptions to leptin and adiponectin, and investigated the intricate relationship between chronic inflammation and obesity. In the methodology of our study, we utilized a systematic search to identify peer-reviewed articles of relevance. This search spanned various model systems, including in vitro, in vivo, and epidemiological studies, providing insights into the distinct advantages and limitations associated with each. Epigenetic modifications and the influence of obesogens on the development of adipose tissue, metabolism, and appetite control further enrich our understanding of this complex field. Finally, we assess the role of endocrine disruptors in amplifying the risk of obesity, emphasizing the heightened susceptibility during crucial developmental periods. This comprehensive review aims to contribute to the ongoing discourse surrounding obesogens, paving the way for targeted interventions and a more profound comprehension of the global obesity epidemic.
Downloads
References
Heindel JJ, Blumberg B. Environmental obesogens: Mechanisms and controversies. Annu Rev Pharmacol Toxicol [Internet]. 2019;59(1):89–106. Available from: http://dx.doi.org/10.1146/annurev-pharmtox-010818-021304.
Ribeiro CM, Beserra BTS, Silva NG, Lima CL, Rocha PRS, Coelho MS, et al. Exposure to endocrine-disrupting chemicals and anthropometric measures of obesity: a systematic review and meta-analysis. BMJ Open [Internet]. 2020;10(6):e033509. Available from: http://dx.doi.org/10.1136/bmjopen-2019-033509.
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol [Internet]. 2017;68:3–33. Available from: http://dx.doi.org/10.1016/j.reprotox.2016.10.001.
Gupta R, Kumar P, Fahmi N, Garg B, Dutta S, Sachar S, et al. Endocrine disruption and obesity: A current review on environmental obesogens. Current Research in Green and Sustainable Chemistry [Internet]. 2020;3(100009):100009. Available from: http://dx.doi.org/10.1016/j.crgsc.2020.06.002.
Ruhlen RL, Howdeshell KL, Mao J, Taylor JA, Bronson FH, Newbold RR, et al. Low phytoestrogen levels in feed increase fetal serum estradiol resulting in the “fetal estrogenization syndrome” and obesity in CD-1 mice. Environ Health Perspect [Internet]. 2008;116(3):322–8. Available from: http://dx.doi.org/10.1289/ehp.10448.
De Araújo JFP, Podratz PL, Sena GC, Merlo E, Freitas-Lima LC, Ayub JGM, et al. The obesogen tributyltin induces abnormal ovarian adipogenesis in adult female rats. Toxicol Lett [Internet]. 2018;295:99–114. Available from: http://dx.doi.org/10.1016/j.toxlet.2018.06.1068.
Lima MS, Perez GS, Morais GL, Santos LS, Cordeiro GS, Couto RD, et al. Effects of maternal high fat intake during pregnancy and lactation on total cholesterol and adipose tissue in neonatal rats. Braz J Biol [Internet]. 2018;78(4):615–8. Available from: http://dx.doi.org/10.1590/1519-6984.166788.
Azad MB, Archibald A, Tomczyk MM, Head A, Cheung KG, de Souza RJ, et al. Nonnutritive sweetener consumption during pregnancy, adiposity, and adipocyte differentiation in offspring: evidence from humans, mice, and cells. Int J Obes (Lond) [Internet]. 2020;44(10):2137–48. Available from: http://dx.doi.org/10.1038/s41366-020-0575-x.
Chamorro-Garcia R, Diaz-Castillo C, Shoucri BM, Käch H, Leavitt R, Shioda T, et al. Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice. Nat Commun [Internet]. 2017;8(1). Available from: http://dx.doi.org/10.1038/s41467-017-01944-z.
Braakhuis HM, Slob W, Olthof ED, Wolterink G, Zwart EP, Gremmer ER, et al. Is current risk assessment of non-genotoxic carcinogens protective? Crit Rev Toxicol [Internet]. 2018;48(6):500–11. Available from: http://dx.doi.org/10.1080/10408444.2018.1458818.
Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. Environ Epigenet [Internet]. 2018;4(2). Available from: http://dx.doi.org/10.1093/eep/dvy016.
Amin MN, Hussain MS, Sarwar MS, Rahman Moghal MM, Das A, Hossain MZ, et al. How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes Metab Syndr [Internet]. 2019;13(2):1213–24. Available from: http://dx.doi.org/10.1016/j.dsx.2019.01.041.
André A, Ruivo R, Fonseca E, Froufe E, Castro LFC, Santos MM. The retinoic acid receptor (RAR) in molluscs: Function, evolution and endocrine disruption insights. Aquat Toxicol [Internet]. 2019;208:80–9. Available from: http://dx.doi.org/10.1016/j.aquatox.2019.01.002.
Mousavi MS, Shahverdi A, Drevet J, Akbarinejad V, Esmaeili V, Sayahpour FA, et al. Peroxisome Proliferator-Activated Receptors (PPARs) levels in spermatozoa of normozoospermic and asthenozoospermic men. Syst Biol Reprod Med [Internet]. 2019;65(6):409–19. Available from: http://dx.doi.org/10.1080/19396368.2019.1677801.
Perez VM, Gabell J, Behrens M, Wase N, DiRusso CC, Black PN. Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPARα-regulated genes. J Biol Chem [Internet]. 2020;295(17):5737–50. Available from: http://dx.doi.org/10.1074/jbc.ra120.012730.
Choi J-M, Bothwell ALM. The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Mol Cells [Internet]. 2012;33(3):217–22. Available from: http://dx.doi.org/10.1007/s10059-012-2297-y.
Straus DS, Glass CK. Cyclopentenone prostaglandins: New insights on biological activities and cellular targets. Med Res Rev [Internet]. 2001;21(3):185–210. Available from: http://dx.doi.org/10.1002/med.1006.
Huang Q, Ma C, Chen L, Luo D, Chen R, Liang F. Mechanistic insights into the interaction between transcription factors and epigenetic modifications and the contribution to the development of obesity. Front Endocrinol (Lausanne) [Internet]. 2018;9. Available from: http://dx.doi.org/10.3389/fendo.2018.00370.
Le Magueresse-Battistoni B. Adipose tissue and endocrine-disrupting chemicals: Does sex matter? Int J Environ Res Public Health [Internet]. 2020;17(24):9403. Available from: http://dx.doi.org/10.3390/ijerph17249403.
Nakashima K-I, Yamaguchi E, Noritake C, Mitsugi Y, Goto M, Hirai T, et al. Discovery and SAR of natural-product-inspired RXR agonists with heterodimer selectivity to PPARδ-RXR. ACS Chem Biol [Internet]. 2020;15(6):1526–34. Available from: http://dx.doi.org/10.1021/acschembio.0c00146.
Cordeiro TN, Sibille N, Germain P, Barthe P, Boulahtouf A, Allemand F, et al. Interplay of protein disorder in retinoic acid receptor heterodimer and its corepressor regulates gene expression. Structure [Internet]. 2019;27(8):1270-1285.e6. Available from: http://dx.doi.org/10.1016/j.str.2019.05.001.
Schmidt J-S, Schaedlich K, Fiandanese N, Pocar P, Fischer B. Effects of Di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice. Environ Health Perspect [Internet]. 2012;120(8):1123–9. Available from: http://dx.doi.org/10.1289/ehp.1104016.
Loh NY, Humphreys E, Karpe F, Tomlinson JW, Noordam R, Christodoulides C. Sex hormones, adiposity, and metabolic traits in men and women: a Mendelian randomisation study. Eur J Endocrinol [Internet]. 2022;186(3):407–16. Available from: http://dx.doi.org/10.1530/eje-21-0703.
Sanchez Costa L, Rodríguez Martínez P, Medina Sala M. Determination of 23 organochlorine pesticides in animal feeds by GC-MS/MS after QuEChERS with EMR-lipid clean-up. Anal Methods [Internet]. 2018;10(43):5171–80. Available from: http://dx.doi.org/10.1039/c8ay01436a.
Gokosmanoglu F, Aksoy E, Onmez A, Ergenç H, Topkaya S. Thyroid homeostasis after bariatric surgery in obese cases. Obes Surg [Internet]. 2020;30(1):274–8. Available from: http://dx.doi.org/10.1007/s11695-019-04151-5.
Yan H, Guo H, Cheng D, Kou R, Zhang C, Si J. Tributyltin reduces the levels of serum adiponectin and activity of AKT and induces metabolic syndrome in male mice. Environ Toxicol [Internet]. 2018;33(7):752–8. Available from: http://dx.doi.org/10.1002/tox.22562.
Kampmann FB, Thuesen ACB, Hjort L, Bjerregaard AA, Chavarro JE, Frystyk J, et al. Increased leptin, decreased adiponectin and FGF21 concentrations in adolescent offspring of women with gestational diabetes. Eur J Endocrinol [Internet]. 2019;181(6):691–700. Available from: http://dx.doi.org/10.1530/eje-19-0658.
Imagawa M, Tsuchiya T, Nishihara T. Identification of inducible genes at the early stage of adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun [Internet]. 1999;254(2):299–305. Available from: http://dx.doi.org/10.1006/bbrc.1998.9937.
Toubal A, Treuter E, Clément K, Venteclef N. Genomic and epigenomic regulation of adipose tissue inflammation in obesity. Trends Endocrinol Metab [Internet]. 2013;24(12):625–34. Available from: http://dx.doi.org/10.1016/j.tem.2013.09.006.
Makita Y, Omura M, Ogata R. Effects of perinatal simultaneous exposure to tributyltin (TBT) andp, p′-DDE (1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene) on male offspring of wistar rats. Journal of Toxicology and Environmental Health, Part A [Internet]. 2004;67(5):385–95. Available from: http://dx.doi.org/10.1080/15287390490273451.
Manteiga S, Lee K. Monoethylhexyl phthalate elicits an inflammatory response in adipocytes characterized by alterations in lipid and cytokine pathways. Environ Health Perspect [Internet]. 2017;125(4):615–22. Available from: http://dx.doi.org/10.1289/ehp464.
Frithioff-Bøjsøe C, Lund MAV, Lausten-Thomsen U, Hedley PL, Pedersen O, Christiansen M, et al. Leptin, adiponectin, and their ratio as markers of insulin resistance and cardiometabolic risk in childhood obesity. Pediatr Diabetes [Internet]. 2020;21(2):194–202. Available from: http://dx.doi.org/10.1111/pedi.12964.
Kimura R, Takahashi N, Goto T, Murota K, Kawada T. Activation of peroxisome proliferator-activated receptor-α (PPARα) in proximal intestine improves postprandial lipidemia in obese diabetic KK-Ay mice. Obes Res Clin Pract [Internet]. 2013;7(5):e353–60. Available from: http://dx.doi.org/10.1016/j.orcp.2013.05.005.
Cheng, Tan, Low, Marvalim, Lee, Tan. Exploration and development of PPAR modulators in health and disease: An update of clinical evidence. Int J Mol Sci [Internet]. 2019;20(20):5055. Available from: http://dx.doi.org/10.3390/ijms20205055.
Teijeiro A, Garrido A, Ferre A, Perna C, Djouder N. Inhibition of the IL-17A axis in adipocytes suppresses diet-induced obesity and metabolic disorders in mice. Nat Metab [Internet]. 2021;3(4):496–512. Available from: http://dx.doi.org/10.1038/s42255-021-00371-1.
Taylor JA, Shioda K, Mitsunaga S, Yawata S, Angle BM, Nagel SC, et al. Prenatal exposure to bisphenol A disrupts naturally occurring bimodal DNA methylation at proximal promoter of fggy, an obesity-relevant gene encoding a carbohydrate kinase, in gonadal white adipose tissues of CD-1 mice. Endocrinology [Internet]. 2018;159(2):779–94. Available from: http://dx.doi.org/10.1210/en.2017-00711.
Arida A, Protogerou A, Kitas G, Sfikakis P. Systemic inflammatory response and atherosclerosis: The paradigm of chronic inflammatory rheumatic diseases. Int J Mol Sci [Internet]. 2018;19(7):1890. Available from: http://dx.doi.org/10.3390/ijms19071890.
Torras N, García-Díaz M, Fernández-Majada V, Martínez E. Mimicking epithelial tissues in three-dimensional cell culture models. Front Bioeng Biotechnol [Internet]. 2018;6. Available from: http://dx.doi.org/10.3389/fbioe.2018.00197.
Qiao Q, Bouwman FG, Renes J, Mariman ECM. An in vitro model for hypertrophic adipocytes: Time‐dependent adipocyte proteome and secretome changes under high glucose and high insulin conditions. J Cell Mol Med [Internet]. 2020;24(15):8662–73. Available from: http://dx.doi.org/10.1111/jcmm.15497.
Niedo J, Tanimoto S, Thompson RH, Abbott RD, Berninger VW. Computerized instruction in translation strategies for students in upper elementary and middle school grades with persisting learning disabilities in written language. Learn Disabil (Pittsbg) [Internet]. 2016;21(2):14–30. Available from: http://dx.doi.org/10.18666/ldmj-2016-v21-i2-7751.
Santos Rizzo Zuttion MS, Dias Câmara DA, Dariolli R, Takimura C, Wenceslau C, Kerkis I. In vitro heterogeneity of porcine adipose tissue-derived stem cells. Tissue Cell [Internet]. 2019;58:51–60. Available from: http://dx.doi.org/10.1016/j.tice.2019.04.001.
Kunz HE, Hart CR, Gries KJ, Parvizi M, Laurenti MC, Dalla Man C, et al. Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. Am J Physiol Endocrinol Metab [Internet]. 2021;(ajpendo.00070.2021). Available from: http://dx.doi.org/10.1152/ajpendo.00070.2021.
Micic D. Endocrine disrupting chemicals and obesity: The evolving story of obesogens. Acta Endocrinol (Buchar) [Internet]. 2021;17(4):503–8. Available from: http://dx.doi.org/10.4183/aeb.2021.503.
Murphy CS, Liaw L, Reagan MR. In vitro tissue-engineered adipose constructs for modeling disease. BMC Biomed Eng [Internet]. 2019;1(1). Available from: http://dx.doi.org/10.1186/s42490-019-0027-7.
Baganha F, Schipper R, Hagberg CE. Towards better models for studying human adipocytes in vitro. Adipocyte [Internet]. 2022;11(1):413–9. Available from: http://dx.doi.org/10.1080/21623945.2022.2104514.
Chen Y, Lee K, Kawazoe N, Yang Y, Chen G. PLGA–collagen–ECM hybrid scaffolds functionalized with biomimetic extracellular matrices secreted by mesenchymal stem cells during stepwise osteogenesis-co-adipogenesis. J Mater Chem B Mater Biol Med [Internet]. 2019;7(45):7195–206. Available from: http://dx.doi.org/10.1039/c9tb01959f.
Jia G, Huang H, Niu J, Chen C, Weng J, Yu F, et al. Exploring the interconnectivity of biomimetic hierarchical porous Mg scaffolds for bone tissue engineering: Effects of pore size distribution on mechanical properties, degradation behavior and cell migration ability. J Magnes Alloy [Internet]. 2021;9(6):1954–66. Available from: http://dx.doi.org/10.1016/j.jma.2021.02.001.
Wang X, Zhang X, Dai X, Wang X, Li X, Diao J, et al. Tumor-like lung cancer model based on 3D bioprinting. 3 Biotech [Internet]. 2018;8(12). Available from: http://dx.doi.org/10.1007/s13205-018-1519-1.
Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 3D in vitro model (R)evolution: Unveiling tumor–stroma interactions. Trends Cancer [Internet]. 2021;7(3):249–64. Available from: http://dx.doi.org/10.1016/j.trecan.2020.10.009.
Silva TM da, Oliveira FM de, Rodrigues KCP, Nobre LR, brito ml. uso de modelos animais na indução da obesidade e alterações fisiológicas / use of animal models in inducing obesity and physiological changes. Braz J Dev [Internet]. 2020;6(9):66278–86. Available from: http://dx.doi.org/10.34117/bjdv6n9-165.
Chamorro-Garcia R, Blumberg B. Current research approaches and challenges in the obesogen field. Front Endocrinol (Lausanne) [Internet]. 2019;10. Available from: http://dx.doi.org/10.3389/fendo.2019.00167.
Pigeot S, Klein T, Gullotta F, Dupard SJ, Garcia Garcia A, García-García A, et al. Manufacturing of human tissues as off‐the‐shelf grafts programmed to induce regeneration. Adv Mater [Internet]. 2021;33(43):2103737. Available from: http://dx.doi.org/10.1002/adma.202103737.
Fuchs T, Loureiro M de P, Macedo LE, Nocca D, Nedelcu M, Costa-Casagrande TA. Modelos animais na síndrome metabólica. Rev Col Bras Cir [Internet]. 2018;45(5). Available from: http://dx.doi.org/10.1590/0100-6991e-20181975.
Talley S, Kalinina O, Winek M, Paik W, Cannon AR, Alonzo F III, et al. A caspase-1 biosensor to monitor the progression of inflammation in vivo. J Immunol [Internet]. 2019;203(9):2497–507. Available from: http://dx.doi.org/10.4049/jimmunol.1900619.
Ruthsatz K, Dausmann KH, Paesler K, Babos P, Sabatino NM, Peck MA, et al. Shifts in sensitivity of amphibian metamorphosis to endocrine disruption: the common frog (Rana temporaria) as a case study. Conserv Physiol [Internet]. 2020;8(1). Available from: http://dx.doi.org/10.1093/conphys/coaa100.
Checkoway H, Lees PSJ, Dell LD, Gentry PR, Mundt KA. Peak exposures in epidemiologic studies and cancer risks: Considerations for regulatory risk assessment. Risk Anal [Internet]. 2019;(risa.13294). Available from: http://dx.doi.org/10.1111/risa.13294.
de la Torre Canny SG, Mueller O, Craciunescu CV, Blumberg B, Rawls JF. Tributyltin exposure leads to increased adiposity and reduced abundance of leptogenic bacteria in the zebrafish intestine [Internet]. bioRxiv. 2021. Available from: http://dx.doi.org/10.1101/2021.07.09.451869.
Mittelstraß K, Waldenberger M. DNA methylation in human lipid metabolism and related diseases. Curr Opin Lipidol [Internet]. 2018;29(2):116–24. Available from: http://dx.doi.org/10.1097/mol.0000000000000491.
King SE, Nilsson E, Beck D, Skinner MK. Adipocyte epigenetic alterations and potential therapeutic targets in transgenerationally inherited lean and obese phenotypes following ancestral exposures. Adipocyte [Internet]. 2019;8(1):362–78. Available from: http://dx.doi.org/10.1080/21623945.2019.1693747.
Meruvu S, Zhang J, Choudhury M. Butyl benzyl phthalate promotes adipogenesis in 3T3-L1 cells via the miRNA-34a-5p signaling pathway in the absence of exogenous adipogenic stimuli. Chem Res Toxicol [Internet]. 2021;34(11):2251–60. Available from: http://dx.doi.org/10.1021/acs.chemrestox.1c00115.
Ye C, Sutter BM, Wang Y, Kuang Z, Zhao X, Yu Y, et al. Demethylation of the protein phosphatase PP2A promotes demethylation of histones to enable their function as a methyl group sink. Mol Cell [Internet]. 2019;73(6):1115-1126.e6. Available from: http://dx.doi.org/10.1016/j.molcel.2019.01.012.
Jarmasz JS, Stirton H, Basalah D, Davie JR, Clarren SK, Astley SJ, et al. Global DNA methylation and histone posttranslational modifications in human and nonhuman primate brain in association with prenatal alcohol exposure. Alcohol Clin Exp Res [Internet]. 2019; Available from: http://dx.doi.org/10.1111/acer.14052.
Song X, Zhou X, Yang F, Liang H, Wang Z, Li R, et al. Association between prenatal bisphenol a exposure and promoter hypermethylation of CAPS2, TNFRSF25, and HKR1 genes in cord blood. Environ Res [Internet]. 2020;190(109996):109996. Available from: http://dx.doi.org/10.1016/j.envres.2020.109996.
Sun L, Lizneva D, Ji Y, Colaianni G, Hadelia E, Gumerova A, et al. Oxytocin regulates body composition. Proc Natl Acad Sci U S A [Internet]. 2019;116(52):26808–15. Available from: http://dx.doi.org/10.1073/pnas.1913611116.
Fujita Y, Kouda K, Nakamura H, Iki M. Relationship between maternal pre-pregnancy weight and offspring weight strengthens as children develop: A population-based retrospective cohort study. J Epidemiol [Internet]. 2018;28(12):498–502. Available from: http://dx.doi.org/10.2188/jea.je20170137.
Wang D, Yan S, Yan J, Teng M, Meng Z, Li R, et al. Effects of triphenyl phosphate exposure during fetal development on obesity and metabolic dysfunctions in adult mice: Impaired lipid metabolism and intestinal dysbiosis. Environ Pollut [Internet]. 2019;246:630–8. Available from: http://dx.doi.org/10.1016/j.envpol.2018.12.053.
Yan S, Wang D, Teng M, Meng Z, Yan J, Li R, et al. Perinatal exposure to low-dose decabromodiphenyl ethane increased the risk of obesity in male mice offspring. Environ Pollut [Internet]. 2018;243(Pt A):553–62. Available from: http://dx.doi.org/10.1016/j.envpol.2018.08.082.
Guo J, Zhang J, Wu C, Xiao H, Lv S, Lu D, et al. Urinary bisphenol A concentrations and adiposity measures at age 7 years in a prospective birth cohort. Chemosphere [Internet]. 2020;251(126340):126340. Available from: http://dx.doi.org/10.1016/j.chemosphere.2020.126340.
Choi R-Y, Lee H-I, Ham JR, Yee S-T, Kang K-Y, Lee M-K. Heshouwu (Polygonum multiflorum Thunb.) ethanol extract suppresses pre-adipocytes differentiation in 3T3-L1 cells and adiposity in obese mice. Biomed Pharmacother [Internet]. 2018;106:355–62. Available from: http://dx.doi.org/10.1016/j.biopha.2018.06.140.
Summerfield M, Zhou Y, Zhou T, Wu C, Alpini G, Zhang KK, et al. A long-term maternal diet transition from high-fat diet to normal fat diet during pre-pregnancy avoids adipose tissue inflammation in next generation. PLoS One [Internet]. 2018;13(12):e0209053. Available from: http://dx.doi.org/10.1371/journal.pone.0209053.
Hölttä-Vuori M, Salo VTV, Nyberg L, Brackmann C, Enejder A, Panula P, et al. Zebrafish: gaining popularity in lipid research. Biochem J [Internet]. 2010;429(2):235–42. Available from: http://dx.doi.org/10.1042/bj20100293.
Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, et al. Endocrine-disrupting chemicals and public health protection: A statement of principles from the endocrine society. Endocrinology [Internet]. 2012;153(9):4097–110. Available from: http://dx.doi.org/10.1210/en.2012-1422.
Birnbaum LS. State of the science of endocrine disruptors. Environ Health Perspect [Internet]. 2013;121(4). Available from: http://dx.doi.org/10.1289/ehp.1306695.
Gu J, Su T, Chen Y, Zhang Q-Y, Ding X. Expression of biotransformation enzymes in human fetal olfactory mucosa: Potential roles in developmental toxicity. Toxicol Appl Pharmacol [Internet]. 2000;165(2):158–62. Available from: http://dx.doi.org/10.1006/taap.2000.8923.
Pine CJ. Anxiety and eating behavior in obese and nonobese American Indians and White Americans. J Pers Soc Psychol [Internet]. 1985;49(3):774–80. Available from: http://dx.doi.org/10.1037/0022-3514.49.3.774.
Andrich DE, Melbouci L, Ou Y, Leduc-Gaudet J-P, Chabot F, Lalonde F, et al. Altered feeding behaviors and adiposity precede observable weight gain in young rats submitted to a short-term high-fat diet. J Nutr Metab [Internet]. 2018;2018:1–10. Available from: http://dx.doi.org/10.1155/2018/1498150.
Rasdi Z, Kamaludin R, Ab. Rahim S, Syed Ahmad Fuad SB, Othman MHD, Siran R, et al. The impacts of intrauterine Bisphenol A exposure on pregnancy and expression of miRNAs related to heart development and diseases in animal model. Sci Rep [Internet]. 2020;10(1). Available from: http://dx.doi.org/10.1038/s41598-020-62420-1.
Tian S, Lei P, Zhang J, Sun Y, Li B, Shan Y. Sulforaphane balances ca 2+ homeostasis injured by excessive fat via mitochondria‐associated membrane (MAM). Mol Nutr Food Res [Internet]. 2021;65(14):2001076. Available from: http://dx.doi.org/10.1002/mnfr.202001076102.
Robles-Aguilera V, Gálvez-Ontiveros Y, Rodrigo L, Salcedo-Bellido I, Aguilera M, Zafra-Gómez A, et al. Factors associated with exposure to dietary bisphenols in adolescents. Nutrients [Internet]. 2021;13(5):1553. Available from: http://dx.doi.org/10.3390/nu13051553.
Griffin, M. D., Pereira, S. R., DeBari, M. K., & Abbott, R. D. (2020). Mechanisms of action, chemical characteristics, and model systems of obesogens. BMC Biomedical Engineering, 2, 6. https://doi.org/10.1186/s42490-020-00040-6.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The copyright to the submitted manuscript is held by the Author, who grants the Journal of Medical Science (JMS) a nonexclusive licence to use, reproduce, and distribute the work, including for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.