Indications and Timing for Genetic Testing in Ovarian Cancer
DOI:
https://doi.org/10.20883/medical.e1274Keywords:
ovarian cancer, brca, hrdAbstract
Modern management of ovarian cancer (OC) relies on molecular diagnostics, with genetic testing playing a central role in therapeutic decisions. High-grade serous ovarian cancer (HGSOC) is frequently associated with mutations in the BRCA1 and BRCA2 genes, as well as other alterations within the homologous recombination repair (HRR) pathway. The identification of pathogenic variants is critical for selecting patients eligible for treatment with poly (ADP-ribose) polymerase inhibitors (PARPi), which significantly improve progression-free survival, especially in individuals with BRCA mutations and homologous recombination deficiency (HRD).
Current guidelines recommend BRCA testing at diagnosis for all patients with HGSOC, followed by HRD testing. Various techniques are used to assess genetic alterations and HRD status. Commercial tests assess mutations in genes in HRR pathways, genomic instability, or HRR functional status to quantify HRD.
Despite the availability of these assays, challenges remain regarding test standardization, predictive accuracy, and cost-effectiveness. Moreover, emerging research highlights the potential for artificial intelligence (AI) to enhance molecular profiling, utilizing whole-slide imaging (WSI) and deep learning to predict homologous recombination deficiency (HRD) and other tumor characteristics.
The integration of molecular subtypes, as defined by The Cancer Genome Atlas (TCGA), into routine clinical practice holds promise for tailoring therapy beyond BRCA or homologous recombination deficiency (HRD) status. As the field advances, comprehensive genetic testing combined with AI-driven analytics may become the cornerstone of precision oncology in ovarian cancer.
Downloads
References
Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian Cancer Statistics, 2018. CA Cancer J Clin. 2018 Jul;68(4):284–96.
Takamatsu S, Brown JB, Yamaguchi K, Hamanishi J, Yamanoi K, Takaya H, et al. Utility of Homologous Recombination Deficiency Biomarkers Across Cancer Types. JCO Precis Oncol. 2022 May;6:e2200085.
Yamulla RJ, Nalubola S, Flesken-Nikitin A, Nikitin AY, Schimenti JC. Most Commonly Mutated Genes in High-Grade Serous Ovarian Carcinoma Are Nonessential for Ovarian Surface Epithelial Stem Cell Transformation. Cell Rep. 2020 Sep 1;32(9):108086.
Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Dao F, et al. Integrated genomic analyses of ovarian carcinoma. Nature. 2011 Jun;474(7353):609–15.
Bukłaho PA, Kiśluk J, Wasilewska N, Nikliński J. Molecular features as promising biomarkers in ovarian cancer. Adv Clin Exp Med. 2023;32(9):1029–40.
Moyer CL, Ivanovich J, Gillespie JL, Doberstein R, Radke MR, Richardson ME, et al. Rare BRIP1 missense alleles confer risk for ovarian and breast cancer. Cancer Res. 2020 Feb 15;80(4):857–67.
Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, et al. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J Clin Oncol. 2020 Mar;38(7):674–85.
Guo T, Dong X, Xie S, Zhang L, Zeng P, Zhang L.
Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer
. Cancer Manag Res. 2021 Apr 8;13:3081–100.Gorski JW, Ueland FR, Kolesar JM. CCNE1 Amplification as a Predictive Biomarker of Chemotherapy Resistance in Epithelial Ovarian Cancer. Diagnostics. 2020 May 5;10(5):279.
Feng Y, Wang D, Xiong L, Zhen G, Tan J. Predictive value of RAD51 on the survival and drug responsiveness of ovarian cancer. Cancer Cell Int. 2021 May 5;21(1):249.
Lawrenson K, Iversen ES, Tyrer J, Weber RP, Concannon P, Hazelett DJ, et al. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer. Carcinogenesis. 2015 Nov;36(11):1341–53.
Arcieri M, Tius V, Andreetta C, Restaino S, Biasioli A, Poletto E, et al. How BRCA and homologous recombination deficiency change therapeutic strategies in ovarian cancer: a review of literature. Front Oncol. 2024 Mar 8;14:1335196.
Kowalik A, Chudecka-Głaz A, Kufel-Grabowska J, Skoneczna I, Kubiatowski T. Diagnostics and treatment of BRCA-associated cancers with olaparib — expert position statement. Oncol Clin Pract. 2024;20(4):229–44.
Baradács I, Teutsch B, Váradi A, Bilá A, Vincze Á, Hegyi P, et al. PARP inhibitor era in ovarian cancer treatment: a systematic review and meta-analysis of randomized controlled trials. J Ovarian Res. 2024 Feb 26;17(1):53.
Giannini A, Di Dio C, Di Donato V, D’oria O, Salerno MG, Capalbo G, et al. PARP Inhibitors in Newly Diagnosed and Recurrent Ovarian Cancer. Am J Clin Oncol. 2023 Sep 1;46(9):414–9.
Lliberos C, Richardson G, Papa A. Oncogenic Pathways and Targeted Therapies in Ovarian Cancer. Biomolecules. 2024 May;14(5):585.
Tangjitgamol S, Manusirivithaya S, Laopaiboon M, Lumbiganon P, Bryant A. Interval debulking surgery for advanced epithelial ovarian cancer. Cochrane Database Syst Rev. 2016 Jan 9;2016(1):CD006014.
Mangogna A, Munari G, Pepe F, Maffii E, Giampaolino P, Ricci G, et al. Homologous Recombination Deficiency in Ovarian Cancer: from the Biological Rationale to Current Diagnostic Approaches. J Pers Med. 2023 Feb 2;13(2):284.
Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993 [cited 2025 Mar 2]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1247/
NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2024 in: Journal of the National Comprehensive Cancer Network Volume 21 Issue 10 (2023) [Internet]. [cited 2025 Feb 26]. Available from: https://jnccn.org/view/journals/jnccn/21/10/article-p1000.xml
Manchana T, Phoolcharoen N, Tantbirojn P. BRCA mutation in high grade epithelial ovarian cancers. Gynecol Oncol Rep. 2019 Aug 13;29:102–5.
Moschetta M, George A, Kaye SB, Banerjee S. BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann Oncol. 2016 Aug 1;27(8):1449–55.
Banerjee S, Moore KN, Colombo N, Scambia G, Kim BG, Oaknin A, et al. Maintenance olaparib for patients with newly diagnosed advanced ovarian cancer and a BRCA mutation (SOLO1/GOG 3004): 5-year follow-up of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021 Dec;22(12):1721–31.
Poveda A, Floquet A, Ledermann JA, Asher R, Penson RT, Oza AM, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2021 May;22(5):620–31.
González-Martín A, Pothuri B, Vergote I, Graybill W, Lorusso D, McCormick CC, et al. Progression-free survival and safety at 3.5years of follow-up: results from the randomised phase 3 PRIMA/ENGOT-OV26/GOG-3012 trial of niraparib maintenance treatment in patients with newly diagnosed ovarian cancer. Eur J Cancer Oxf Engl 1990. 2023 Aug;189:112908.
Mu W, Lu HM, Chen J, Li S, Elliott AM. Sanger Confirmation Is Required to Achieve Optimal Sensitivity and Specificity in Next-Generation Sequencing Panel Testing. J Mol Diagn JMD. 2016 Nov;18(6):923–32.
Ozcelik H, Shi X, Chang MC, Tram E, Vlasschaert M, Di Nicola N, et al. Long-range PCR and next-generation sequencing of BRCA1 and BRCA2 in breast cancer. J Mol Diagn JMD. 2012 Sep;14(5):467–75.
Liu K, Hu L, Wang S, Chen X, Liu Y, Zhao S, et al. An efficient qPCR assay for the quantification of human cells in preclinical animal models by targeting human specific DNA in the intron of BRCA1. Mol Biol Rep. 2023 Nov;50(11):9229–37.
Lucky MH, Baig S, Hanif M, Asghar AH. Systematic Review: Comprehensive Methods for Detecting BRCA1 and BRCA2 Mutations in Breast and Ovarian Cancer. Asian Pac J Cancer Biol. 2025 Feb 5;10(1):229–38.
Ahmadloo S, Nakaoka H, Hayano T, Hosomichi K, You H, Utsuno E, et al. Rapid and cost-effective high-throughput sequencing for identification of germline mutations of BRCA1 and BRCA2. J Hum Genet. 2017 May;62(5):561–7.
Wallace AJ. New challenges for BRCA testing: a view from the diagnostic laboratory. Eur J Hum Genet. 2016 Sep;24(1):S10–8.
Vogel A, Haupts A, Kloth M, Roth W, Hartmann N. A novel targeted NGS panel identifies numerous homologous recombination deficiency (HRD)-associated gene mutations in addition to known BRCA mutations. Diagn Pathol. 2024 Jan 6;19(1):9.
Witz A, Dardare J, Betz M, Michel C, Husson M, Gilson P, et al. Homologous recombination deficiency (HRD) testing landscape: clinical applications and technical validation for routine diagnostics. Biomark Res. 2025 Feb 21;13:31.
Riahi A, Chabouni-Bouhamed H, Kharrat M. Prevalence of BRCA1 and BRCA2 large genomic rearrangements in Tunisian high risk breast/ovarian cancer families: Implications for genetic testing. Cancer Genet. 2017 Jan;210:22–7.
Ray-Coquard I, Leary A, Pignata S, Cropet C, González-Martín A, Marth C, et al. Olaparib plus bevacizumab first-line maintenance in ovarian cancer: final overall survival results from the PAOLA-1/ENGOT-ov25 trial. Ann Oncol Off J Eur Soc Med Oncol. 2023 Aug;34(8):681–92.
Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol. 2020 Dec 1;31(12):1606–22.
Coleman RL, Fleming GF, Brady MF, Swisher EM, Steffensen KD, Friedlander M, et al. Veliparib with First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer. N Engl J Med. 2019 Dec 19;381(25):2403–15.
González-Martín A, Pothuri B, Vergote I, DePont Christensen R, Graybill W, Mirza MR, et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N Engl J Med. 2019 Dec 19;381(25):2391–402.
Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R, et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N Engl J Med. 2019 Dec 19;381(25):2416–28.
Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. 2017 Oct 28;390(10106):1949–61.
Li N, Zhu J, Yin R, Wang J, Pan L, Kong B, et al. Efficacy and safety of niraparib as maintenance treatment in patients with newly diagnosed advanced ovarian cancer using an individualized starting dose (PRIME Study): A randomized, double-blind, placebo-controlled, phase 3 trial (LBA 5). Gynecol Oncol. 2022 Aug 1;166:S50–1.
Pellegrino B, Capoluongo ED, Bagnoli M, Arenare L, Califano D, Scambia G, et al. Unraveling the complexity of HRD assessment in ovarian cancer by combining genomic and functional approaches: translational analyses of MITO16-MaNGO-OV-2 trial. ESMO Open. 2025 Jan 3;10(1):104091.
Guffanti F, Mengoli I, Damia G. Current HRD assays in ovarian cancer: differences, pitfalls, limitations, and novel approaches. Front Oncol. 2024 Aug 16;14:1405361.
Daly GR, Naidoo S, Alabdulrahman M, McGrath J, Dowling GP, AlRawashdeh MM, et al. Screening and Testing for Homologous Recombination Repair Deficiency (HRD) in Breast Cancer: an Overview of the Current Global Landscape. Curr Oncol Rep. 2024;26(8):890–903.
Rognoni C, Lorusso D, Costa F, Armeni P. Cost-Effectiveness Analysis of HRD Testing for Previously Treated Patients with Advanced Ovarian Cancer in Italy. Adv Ther. 2024 Apr;41(4):1385–400.
Ngoi NYL, Tan DSP. The role of homologous recombination deficiency testing in ovarian cancer and its clinical implications: do we need it? ESMO Open. 2021 May 18;6(3):100144.
Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol. 2020 Dec 1;31(12):1606–22.
Kekeeva T, Andreeva Y, Tanas A, Kalinkin A, Khokhlova S, Tikhomirova T, et al. HRD Testing of Ovarian Cancer in Routine Practice: What Are We Dealing With? Int J Mol Sci. 2023 Jun 22;24(13):10497.
Quesada S, Penault-Llorca F, Matias-Guiu X, Banerjee S, Barberis M, Coleman RL, et al. Homologous recombination deficiency in ovarian cancer: Global expert consensus on testing and a comparison of companion diagnostics. Eur J Cancer. 2025 Jan 17;215:115169.
Feng J, Lan Y, Liu F, Yuan Y, Ge J, Wei S, et al. Combination of genomic instability score and TP53 status for prognosis prediction in lung adenocarcinoma. Npj Precis Oncol. 2023 Oct 31;7(1):1–9.
Zhang X, Sjöblom T. Targeting Loss of Heterozygosity: A Novel Paradigm for Cancer Therapy. Pharm Basel Switz. 2021 Jan 13;14(1):57.
McMahon JN, Gaffney EF, Aliaga-Kelly WJ, Stephens JF, Jalali A, Curran B. P53 loss of heterozygosity (LOH) in formalin-fixed paraffin-embedded leiomyosarcoma (LMS): a novel report. Ir J Med Sci 1971 -. 2024 Feb 1;193(1):65–71.
Stewart MD, Merino Vega D, Arend RC, Baden JF, Barbash O, Beaubier N, et al. Homologous Recombination Deficiency: Concepts, Definitions, and Assays. The Oncologist. 2022 Jan 27;27(3):167–74.
Schonhoft JD, Zhao JL, Jendrisak A, Carbone EA, Barnett ES, Hullings MA, et al. Morphology-predicted large scale transition number in circulating tumor cells identifies a chromosomal instability biomarker associated with poor outcome in castration-resistant prostate cancer. Cancer Res. 2020 Nov 15;80(22):4892–903.
Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q, Tian R, et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA damaging agents. Cancer Discov. 2012 Apr;2(4):366–75.
Llop-Guevara A, Loibl S, Villacampa G, Vladimirova V, Schneeweiss A, Karn T, et al. Association of RAD51 with homologous recombination deficiency (HRD) and clinical outcomes in untreated triple-negative breast cancer (TNBC): analysis of the GeparSixto randomized clinical trial. Ann Oncol. 2021 Dec 1;32(12):1590–6.
Gómez-Flores-Ramos L, Álvarez-Gómez RM, Villarreal-Garza C, Wegman-Ostrosky T, Mohar A. Breast cancer genetics in young women: What do we know? Mutat Res Mutat Res. 2017 Oct 1;774:33–45.
Casartelli C, Tommasi C, Lazzarin A, Corianò M, Tornali C, Serra O, et al. Functional HRD by RAD51 identifies BRCA1 VUS associated with loss of gene function and response to DNA-damaging agents. ESMO Open [Internet]. 2024 Jul 1 [cited 2025 Feb 6];9(7). Available from: https://www.esmoopen.com/article/S2059-7029(24)01398-X/fulltext
Quesada S, Penault-Llorca F, Matias-Guiu X, Banerjee S, Barberis M, Coleman RL, et al. Homologous recombination deficiency in ovarian cancer: Global expert consensus on testing and a comparison of companion diagnostics. Eur J Cancer [Internet]. 2025 Jan 17 [cited 2025 Feb 21];215. Available from: https://www.ejcancer.com/article/S0959-8049(24)01776-3/fulltext
Milbury CA, Creeden J, Yip WK, Smith DL, Pattani V, Maxwell K, et al. Clinical and analytical validation of FoundationOne®CDx, a comprehensive genomic profiling assay for solid tumors. PloS One. 2022;17(3):e0264138.
Trautmann M, Falkenberg K, Braun L, Puller AC, Kirmse S, Heinst L, et al. 1253P Analytic validation and implementation of OncoDEEP: A pan-cancer comprehensive genomic profiling NGS assay for assessing homologous recombination deficiency (HRD). Ann Oncol. 2023 Oct 1;34:S728.
Boidot R, Blum MGB, Wissler MP, Gottin C, Ruzicka J, Chevrier S, et al. Clinical evaluation of a low-coverage whole-genome test for detecting homologous recombination deficiency in ovarian cancer. Eur J Cancer Oxf Engl 1990. 2024 May;202:113978.
Pozzorini C, Andre G, Coletta T, Buisson A, Bieler J, Ferrer L, et al. GIInger predicts homologous recombination deficiency and patient response to PARPi treatment from shallow genomic profiles. Cell Rep Med. 2023 Dec 19;4(12):101344.
Fumagalli C, Betella I, Ranghiero A, Guerini-Rocco E, Bonaldo G, Rappa A, et al. In-house testing for homologous recombination repair deficiency (HRD) testing in ovarian carcinoma: a feasibility study comparing AmoyDx HRD Focus panel with Myriad myChoiceCDx assay. Pathologica. 2022 Aug;114(4):288–94.
AmoyDx® HRD Complete Panel - [AmoyDx] [Internet]. [cited 2025 Apr 3]. Available from: https://www.amoydiagnostics.com/products/amoydx-hrd-complete-panel
Levine DA. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May;497(7447):67–73.
Espinosa I, D’Angelo E, Prat J. Endometrial carcinoma: 10 years of TCGA (the cancer genome atlas): A critical reappraisal with comments on FIGO 2023 staging. Gynecol Oncol. 2024 Jul 1;186:94–103.
Kommoss S, Heitz F, Winterhoff BJN, Wang C, Sehouli J, Aliferis C, et al. Significant overall survival improvement in proliferative subtype ovarian cancer patients receiving bevacizumab. J Clin Oncol. 2018 May 20;36(15_suppl):5520–5520.
Winterhoff BJN, Kommoss S, Oberg AL, Wang C, Riska SM, Konecny GE, et al. Bevacizumab and improvement of progression-free survival (PFS) for patients with the mesenchymal molecular subtype of ovarian cancer. J Clin Oncol. 2014 May 20;32(15_suppl):5509–5509.
Kommoss S, Winterhoff B, Oberg AL, Konecny GE, Wang C, Riska SM, et al. Bevacizumab may differentially improve ovarian cancer outcome in patients with proliferative and mesenchymal molecular subtypes. Clin Cancer Res Off J Am Assoc Cancer Res. 2017 Jul 15;23(14):3794–801.
Murakami R, Matsumura N, Michimae H, Tanabe H, Yunokawa M, Iwase H, et al. The mesenchymal transition subtype more responsive to dose dense taxane chemotherapy combined with carboplatin than to conventional taxane and carboplatin chemotherapy in high grade serous ovarian carcinoma: A survey of Japanese Gynecologic Oncology Group study (JGOG3016A1). Gynecol Oncol. 2019 May 1;153(2):312–9.
Murakami R, Matsumura N, Mandai M, Yoshihara K, Tanabe H, Nakai H, et al. Establishment of a Novel Histopathological Classification of High-Grade Serous Ovarian Carcinoma Correlated with Prognostically Distinct Gene Expression Subtypes. Am J Pathol. 2016 May 1;186(5):1103–13.
Reese SE, Archer KJ, Therneau TM, Atkinson EJ, Vachon CM, de Andrade M, et al. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. Bioinformatics. 2013 Nov 15;29(22):2877–83.
Zhang S, Jing Y, Zhang M, Zhang Z, Ma P, Peng H, et al. Stroma-associated master regulators of molecular subtypes predict patient prognosis in ovarian cancer. Sci Rep. 2015 Nov 4;5(1):16066.
Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol [Internet]. 2017 Dec 20 [cited 2025 Mar 30];2(4). Available from: https://svn.bmj.com/content/2/4/230
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019 Jan;25(1):24–9.
Hatamikia S, Nougaret S, Panico C, Avesani G, Nero C, Boldrini L, et al. Ovarian cancer beyond imaging: integration of AI and multiomics biomarkers. Eur Radiol Exp. 2023 Sep 13;7(1):50.
Orr BC, Uihlein AH, Montgomery R, Radolec M, Edwards RP. Using artificial intelligence-powered evidence-based molecular decision-making for improved outcomes in ovarian cancer. J Clin Oncol. 2024 Jun;42(16_suppl):5555–5555.
Bergstrom EN, Abbasi A, Díaz-Gay M, Galland L, Ladoire S, Lippman SM, et al. Deep Learning Artificial Intelligence Predicts Homologous Recombination Deficiency and Platinum Response From Histologic Slides. J Clin Oncol. 2024 Oct 20;42(30):3550–60.
Frenel JS, Bossard C, Rynkiewicz J, Thomas F, Salhi Y, Salhi S, et al. Artificial intelligence to predict homologous recombination deficiency in ovarian cancer from whole-slide histopathological images. J Clin Oncol. 2024 Jun;42(16_suppl):5578–5578.
Loeffler CML, El Nahhas OSM, Muti HS, Carrero ZI, Seibel T, van Treeck M, et al. Prediction of homologous recombination deficiency from routine histology with attention-based multiple instance learning in nine different tumor types. BMC Biol. 2024 Oct 8;22(1):225.
Zhang K, Qiu Y, Feng S, Yin H, Liu Q, Zhu Y, et al. Development of model for identifying homologous recombination deficiency (HRD) status of ovarian cancer with deep learning on whole slide images. J Transl Med. 2025 Mar 4;23:267.
Ueda A, Nakai H, Miyagawa C, Otani T, Yoshida M, Murakami R, et al. Artificial Intelligence-Based Histopathological Subtyping of High-Grade Serous Ovarian Cancer. Am J Pathol. 2024 Oct 1;194(10):1913–23.
Geng T, Zheng M, Wang Y, Reseland JE, Samara A. An artificial intelligence prediction model based on extracellular matrix proteins for the prognostic prediction and immunotherapeutic evaluation of ovarian serous adenocarcinoma. Front Mol Biosci. 2023 Jun 14;10:1200354.
Sharma O, Gudoityte G, Minozada R, Kallioniemi OP, Turkki R, Paavolainen L, et al. Evaluating feature extraction in ovarian cancer cell line co-cultures using deep neural networks. Commun Biol. 2025 Feb 25;8(1):303.
Published
Issue
Section
License
Copyright (c) 2025 The copyright to the submitted manuscript is held by the Author, who grants the Journal of Medical Science (JMS) a nonexclusive licence to use, reproduce, and distribute the work, including for commercial purposes.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.