Investigation of TXNIP, VDR and hOGG1 gene expression patterns and potential therapeutic targets in bladder cancer patients

TXNIP, VDR, hOGG1 genes in bladder cancer

Authors

DOI:

https://doi.org/10.20883/medical.e1088

Keywords:

bladder cancer, TXNIP, VDR, hOGG1, 25(OH)D3, selenium

Abstract

Backround. The aim of this study was to examine the expression levels of the Thioredoxin interacting protein (TXNIP), Vitamin D receptor (VDR), Human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) genes in bladder cancer patients, according to clinical staging and determine the levels of potential therapeutic targets in serum samples.

Material and Methods. Tissue and serum samples of patients who underwent transurethral resection (TUR) between 2017 and 2018 were obtained. Levels of TXNIP, hOGG1, and VDR genes were assessed using Real time-polymerase chain reaction (RT-PCR), while levels of Thioredoxin (Trx), 8-hydroxy-2' -deoxyguanosine (8-OHdG), and 1,25-dihydroxyvitamin D (25(OH)D3) were evaluated using the enzyme-linked immunosorbant assay (ELISA) method. Selenium levels were also measured using Optical Emission Spectroscopy (ICP-OES) in both tissue and serum samples. The protein-protein interactions and molecular and biological function of the proteins were assessed using Search Tool for the Retrieval of Interacting Genes/Proteins. Statistical analysis was conducted using IBM SPSS Statistics version 20.0.

Results. The TXNIP gene showed higher expression in low-grade bladder cancer patients up to stage T1, but decreased in high-grade T1 and T2 stages. Both VDR and hOGG1 gene expressions were consistently lower across all clinical subgroups. No significant differences were found in serum 25(OH)D3, 8-OHdG, Hypoxia Inducible Factor 1 Alpha (HIF-1α), selenium (Se), and tissue Se levels.

Conclusions. TXNIP mRNA expression was remarkably lower in advanced stages. VDR and hOGG1 expression were low in all bladder cancer subgroups. These parameters could serve as potential targets for preventing or treating bladder cancer.

Downloads

Download data is not yet available.

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May;71(3):209–49. doi: 10.3322/caac.21660.

Rubio-Briones J, Algaba F, Gallardo E, Marcos-Rodríguez JA, Climent MÁ. Recent advances in the management of patients with non-muscle-invasive bladder cancer using a multidisciplinary approach: Practical recommendations from the spanish oncology genitourinary (SOGUG) working group. Cancers (Basel). 2021 Sep;(19):4762. doi: 10.3390/cancers13194762.

Brigelius-Flohe R, Flohe L. Selenium and redox signaling. Arch Biochem Biophys. 2017 Mar;617:48–59. doi: 10.1016/j.abb.2016.08.003.

Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J, Maes M. The role of the thioredoxin system in brain diseases. Antioxidants (Basel). 2022 Nov;11(11):2161. doi: 10.3390/antiox11112161.

Hasan AA, Kalinina E, Tatarskiy V, Shtil A. The thioredoxin system of mammalian cells and its modulators. Biomedicines. 2022 Jul;10(7):1757. doi: 10.3390/biomedicines10071757.

Qayyum N, Haseeb M, Kim MS, Choi S. Role of thioredoxin-interacting protein in diseases and its therapeutic outlook. Int J Mol Sci. 2021 Mar;22(5):2754. doi: 10.3390/10.3390/ijms22052754.

Dennert G, Zwahlen M, Brinkman M, Vinceti M, Zeegers MP, Horneber M. Selenium for preventing cancer. Cochrane Database Syst Rev. 2011 May;5:CD005195. doi: 10.1002/14651858.CD005195.pub2.

Reszka, E. Selenoproteins in bladder cancer. Clin Chim Acta. 2012 May; 413(9-10):847–54. doi: 10.1016/j.cca.2012.01.041.

Wang X, Nachliely M, Harrison JS, Danilenko M, Studzinski GP. Participation of vitamin D-upregulated protein 1 (TXNIP)-ASK1-JNK1 signalosome in the enhancement of AML cell death by a post-cytotoxic differentiation regimen. J Steroid Biochem Mol Biol. 2019 Mar;187:166–73. doi: 10.1016/j.jsbmb.2018.11.015.

Moller P, Stopper H, Collins AR. Measurement of DNA damage with the comet assay in high-prevalence diseases: Current status and future directions. Mutagenesis. 2020 Feb;35(1):5–18. doi: 10.1093/mutage/gez018.

Vodicka P, Vodenkova S, Opattova A, Vodickova L. DNA damage and repair measured by comet assay in cancer patients. Mutat Res Genet Toxicol Environ Mutagen. 2019 Jul;843:95–110. doi: 10.1016/j.mrgentox.2019.05.009.

Schniertshauer D, Gebhard D, van Beek H, Nöth V, Schon J, Bergemann J. The activity of the DNA repair enzyme hOGG1 can be directly modulated by ubiquinol. DNA Repair (Amst). 2020 Mar;87:102784. doi: 10.1016/j.dnarep.2019.102784.

AbuArrah M. 8-Hydroxy-2-Deoxyguanosine as oxidative DNA damage biomarker of medical ionizing radiation: A scoping review. J Biomed Phys Eng. 2021 Jun;11(3):389–402. doi: 10.31661/jbpe.v0i0.2101-1258.

Zitman-Gal T, Golan E, Green J, Bernheim J, Benchetrit S. Vitamin D receptor activation in a diabetic-like environment: Potential role in the activity of the endothelial pro-inflammatory and thioredoxin pathways. J Steroid Biochem Mol Biol. 2012 Oct;132(1-2):1–7. doi: 10.1016/j.jsbmb.2012.04.003.

Sentinelli F, Bertoccini L, Barchetta I, Capoccia D, Incani M, Pani MG, Loche S, Angelico F, Arca M, Morini S, Manconi E, Lenzi A, Cossu E, Leonetti F, Baroni MG, Cavallo MG. The vitamin D receptor (VDR) gene rs11568820 variant is associated with type 2 diabetes and impaired insulin secretion in Italian adult subjects, and associates with increased cardio-metabolic risk in children. Nutr Metab Cardiovasc Dis. 2016 May;26(5):407–13. doi: 10.1016/j.numecd.2016.02.004.

Karahalil B, Kocabas NA, Ozçelik T. DNA repair gene polymorphisms and bladder cancer susceptibility in a Turkish population. Anticancer Res. 2006 Nov-Dec;26(6C):4955–8. .

Runge J, Heringer OA, Ribeiro JS, Biazati LB. Multi-element rice grains analysis by ICP OES and classification by processing types. Food Chem. 2019 Jan;271:419–24. doi: 10.1016/j.foodchem.2018.07.162.

Masutani H. Thioredoxin-interacting protein in cancer and diabetes. Antioxid Redox Signal. 2022 May;36(13-15):1001–22. doi: 10.1089/ars.2021.0038.

Nishizawa K, Nishiyama H, Matsui Y, Kobayashi T, Saito R, Kotani H, Oishi S, Toda Y, Fujii N, Yodoi J, Ogawa O. Thioredoxin-interacting protein suppresses bladder carcinogenesis. Carcinogenesis. 2011 Oct;32(10):1459-66. doi: 10.1093/carcin/bgr137.

Katturajan R, Nithiyanandam S, Parthasarathy M, Valsala Gopalakrishnan A, Sathiyamoorthi E, Lee J, Ramesh T, Iyer M, Prince SE, Ganesan R. Immunomodulatory Role of thioredoxin interacting protein in cancer’s impediments: current understanding and therapeutic implications. Vaccines (Basel). 2022 Nov;10(11):1902. doi: 10.3390/vaccines10111902.

Mohamed IN, Li L, Ismael S, Ishrat T, El-Remessy AB. Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response. World J Diabetes. 2021 Dec;12(12):1979–99. doi: 10.4239/wjd.v12.i12.1979.

Zhou J, Yu Q, Chng WJ. TXNIP (VDUP-1, TBP-2): A major redox regulator commonly suppressed in cancer by epigenetic mechanisms. Int J Biochem Cell Biol. 2011 Dec;43(12):1668–73. doi: 10.1016/j.biocel.2011.09.005.

Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA, Richon VM. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin Proc Natl Acad. 2002 Sep;99(18):11700–5. doi: 10.1073/pnas.182372299.

Zhou J, Bi C, Cheong LL, Mahara S, Liu SC, Tay KG, Koh TL, Yu Q, Chng WJ. The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood. 2011 Sep;118(10):2830–9. doi: 10.1182/blood-2010-07-294827.

Chen Y, Ning J, Cao W, Wang S, Du T, Jiang J, Feng X, Zhang B. Research progress of TXNIP as a tumor suppressor gene participating in the metabolic reprogramming and oxidative stress of cancer cells in various cancers. Front Oncol. 2020 Oct;10:568574. doi: 10.3389/fonc.2020.568574.

Jóźwicki W, Brożyna AA, Siekiera J, Slominski AT. Expression of Vitamin D Receptor (VDR) positively correlates with survival of urothelial bladder cancer patients. Int J Mol Sci. 2015 Oct 15;16(10):24369-86. doi: 10.3390/ijms161024369.

Pike JW, Meyer MB. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D(3). Endocrinol Metab Clin North Am. 2010 Jun; 39(2):255-69, table of contents. doi: 10.1016/j.ecl.2010.02.007 .

Pike JW, Lee SM, Meyer MB. Regulation of gene expression by 1,25-dihydroxyvitamin D3 in bone cells: exploiting new approaches and defining new mechanisms. Bonekey Rep. 2014 Jan 8;3:482. doi: 10.1038/bonekey.2013.216.

Fathi N, Ahmadian E, Shahi S, Roshangar L, Khan H, Kouhsoltani M, Maleki Dizaj S, Sharifi S. Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed Pharmacother. 2019 Jan;109:391–401. doi: 10.1016/j.biopha.2018.10.102.

Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Connie M. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011 Jul;96(7):1911–30. doi: 10.1210/jc.2011-0385.

Kim Y, Kim YS, Kim M, Kim JM, Lee HH, Kim TH. Thioredoxin-interacting Protein (TXNIP) Mediates Thioredoxin-dependent Antioxidant Mechanism in Endometrial Cancer Cells Treated With 1α,25-dihydroxyvitamin D3. Anticancer Res. 2019 Sep;39(9):4795-803. doi: 10.21873/anticanres.13664.

Reszka E, Lesicka M, Wieczorek E, Jabłońska E, Janasik B, Stępnik M, Konecki T, Jabłonowski Z. Dysregulation of redox status in urinary bladder cancer patients. Cancers. 2020 May;12(5);1296. doi: 10.3390/cancers12051296.

Janik J, Swoboda M, Janowska B, Cieśla JM, Gackowski D, Kowalewski J, Olinski R, Tudek B, Speina E. 8-Oxoguanine incision activity is impaired in lung tissues of NSCLC patients with the polymorphism of OGG1 and XRCC1 genes. Mutat Res. 2011 May 10;709-710:21-31. doi: 10.1016/j.mrfmmm.2011.02.009.

Paz-Elizur T, Krupsky M, Blumenstein S, Elinger D, Schechtman E, Livneh Z. DNA repair activity for oxidative damage and risk of lung cancer. J Natl Cancer Inst. 2003 Sep 3;95(17):1312-9. doi: 10.1093/jnci/djg033.

Paz-Elizur T, Ben-Yosef R, Elinger D, Vexler A, Krupsky M, Berrebi A, Shani A, Schechtman E, Freedman L, Livneh Z. Reduced repair of the oxidative 8-oxoguanine DNA damage and risk of head and neck cancer. Cancer Res. 2006 Dec 15;66(24):11683-9. doi: 10.1158/0008-5472.CAN-06-2294.

Obtulowicz T, Swoboda M, Speina E, Gackowski D, Rozalski R, Siomek A, Janik J, Janowska B, Ciesla JM, Jawien A, Banaszkiewicz Z, Guz J, Dziaman T, Szpila A, Olinski R, Tudek B. Oxidative stress and 8-oxoguanine repair are enhanced in colon adenoma and carcinoma patients. Mutagenesis. 2010 Sep;25(5):463-71. doi: 10.1093/mutage/geq028.

Somuncu B, Keskin S, Antmen FM, Saglican Y, Ekmekcioglu A, Ertuzun T, Tuna MB, Obek C, Wilson DM 3rd, Ince U, Kural AR, Muftuoglu M. Non-muscle invasive bladder cancer tissues have increased base excision repair capacity. Sci Rep. 2020 Oct 1;10(1):16371. doi: 10.1038/s41598-020-73370-z.

Rangel-Zuniga OA, Haro C, Tormos C, Perez-Martinez P, Delgado-Lista J, Marin C, Quintana-Navarro GM, Cerdá C, Sáez GT, Lopez-Segura F, Lopez-Miranda J, Francisco Perez-Jimenez F, Camargo A. Frying oils with high natural or added antioxidants content, which protect against postprandial oxidative stress, also protect against DNA oxidation damage. Eur J Nutr. 2017 Jun;56:1597–607. doi: 10.1007/s00394-016-1205-1.

Bellinger FP, Raman AV, Reeves MA, Berry MJ. Regulation and function of selenoproteins in human disease. Biochem J. 2009 Jul 29;422(1):11-22. doi: 10.1042/BJ20090219.

Radomska D, Czarnomysy R, Radomski D, Bielawski K. Selenium compounds as novel potential anticancer agents. Int J Mol Sci. 2021 Jan;22:1009. doi: 10.3390/ijms22031009.

Amaral AF, Cantor KP, Silverman DT, Malats N. Selenium and bladder cancer risk: A meta-analysis. Cancer epidemiology, biomarkers & prevention: A publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. Cancer Epidemiol Biomark Prev. 2010 Sep;19(9):2407–15. doi: 10.1158/1055-9965.EPI-10-0544.

Mortada WI, Awadalla A, Khater S, Ahmed A, Hamam ET, El-Zayat M, Shokeir AA. Copper and zinc levelsin plasma and cancerous tissues and their relation with expression of VEGF and HIF-1 in the pathogenesis of muscle invasive urothelial bladder cancer: a case-controlled clinical study. Environ Sci Pollut Res Int. 2020 May;27:15835-41. doi: 10.1007/s11356-020-08113-8.

Shigeta K, Hasegawa M, Hishiki T, Naito Y, Baba Y, Mikami S, Matsumoto K, Mizuno R, Akira Miyajima, Kikuchi E, Saya H, Kosaka T, Oya M. IDH2 stabilizes HIF-1α-induced metabolic reprogramming and promotes chemoresistancein urothelial cancer. EMBO J. 2023 Feb;42(4):e110620. doi: 10.15252/embj.2022110620.

Siregar GP, Parwati I, Noegroho BS, Safridai F, Situmorang GR, Yohana R, Khairani, A. F. The association between serum hypoxia inducible factor-1α level and urothelial bladder cancer: A preliminary study. Arch Ital Urol Androl. 2023 May;95(2):11292. doi: 10.4081/aiua.2023.11292.

Badr S, Salem A, Yuosif AH, Awadallah H, Awed N, Bakr A. Hypoxia inducible factor-1alphaand microvessel density as angiogenic factors in bilharzial and non-birharzial bladder cancer. Clin Lab. 2013;59(7-8):805-12. doi: 10.7754/clin.lab.2012.120605.

Downloads

Published

2024-09-30

Issue

Section

Original Papers

How to Cite

1.
Acar E, Dillioglugil MO, Sarihan M, Yilmaz H, Yuksekkaya M, Ates F, et al. Investigation of TXNIP, VDR and hOGG1 gene expression patterns and potential therapeutic targets in bladder cancer patients: TXNIP, VDR, hOGG1 genes in bladder cancer. JMS [Internet]. 2024 Sep. 30 [cited 2024 Oct. 5];93(3):e1088. Available from: https://jmsnew.ump.edu.pl/index.php/JMS/article/view/1088