
Journal of Medical Science 2021;90(2) 111

Ethical issues on artifi cial intelligence in 
radiology: how is it reported in research articles? 
The current state and future directions

R E V I E W  PA P E R

Tomasz Piotrowski
Department of Electroradiology, Poznan 
University of Medical Sciences, Poland

 https://orcid.org/0000-0002-8894-7412

Corresponding author: tomaszpiotrowski@ump.edu.pl

Joanna Kazmierska
Department of Electroradiology, Poznan University of 
Medical Sciences, Poland; Radiotherapy Department 
II, Greater Poland Cancer Centre, Poznan, Poland

 https://orcid.org/0000-0001-7160-8150

Mirosława Mocydlarz-Adamcewicz
Department of Electroradiology, Poznan University 
of Medical Sciences, Poland; IT Department, Greater 
Poland Cancer Centre, Poznań, Poland

 https://orcid.org/0000-0001-9201-9099

Adam Ryczkowski
Department of Electroradiology, Poznan University of 
Medical Sciences, Poland; Department of Medical Physics, 
Greater Poland Cancer Centre, Poznań, Poland

 https://orcid.org/0000-0001-5106-5152

 DOI: https://doi.org/10.20883/medical.e513

Keywords: ethics, radiology, artifi cial intelligence, 
diagnostics, medical imaging

Published: 2021-06-29

How to Cite: Piotrowski T, Kazmierska J, Mocydlarz-Adam-
cewicz M, Ryczkowski A. Ethical issues on artifi cial intelli-
gence in radiology: how is it reported in research articles? 
The current state and future directions. JMS. 2021 Jun. 
29;90(2):e513. doi:10.20883/medical.e513

© 2021 by the author(s). This is an open access article distributed 
under the terms and conditions of the Creative Commons Attri-
bution (CC BY-NC) licencse. Published by Poznan University of 
Medical Sciences

ABSTRACT

Background. This paper evaluates the status of reporting information related to the usage and ethical issues 
of artifi cial intelligence (AI) procedures in clinical trial (CT) papers focussed on radiology issues as well as 
other (non-trial) original radiology articles (OA).
Material and Methods. The evaluation was performed by three independent observers who were, respective-
ly physicist, physician and computer scientist. The analysis was performed for two groups of publications, 
i.e., for CT and OA. Each group included 30 papers published from 2018 to 2020, published before guidelines 
proposed by Liu et al. (Nat Med. 2020; 26:1364-1374). The set of items used to catalogue and to verify the 
ethical status of the AI reporting was developed using the above-mentioned guidelines. 
Results. Most of the reviewed studies, clearly stated their use of AI methods and more importantly, almost 
all tried to address relevant clinical questions. Although in most of the studies, patient inclusion and exclu-
sion criteria were presented, the widespread lack of rigorous descriptions of the study design apart from a 
detailed explanation of the AI approach itself is noticeable. Few of the chosen studies provided information 
about anonymization of data and the process of secure data sharing. Only a few studies explore the patterns 
of incorrect predictions by the proposed AI tools and their possible reasons. 
Conclusion. Results of review support idea of implementation of uniform guidelines for designing and report-
ing studies with use of AI tools. Such guidelines help to design robust, transparent and reproducible tools for 
use in real life.
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Introduction

Advances in radiology directly correlate with 
developments in imaging technology [1]. Develop-
ing new imaging modalities or increasing the effi -
cacy of already implemented solutions improves 
the decision-making process in routine work of 
radiologists making their analysis more accurate. 
To implement new hardware solutions with dedi-
cated software from factory to clinic, an appro-
priate certifi cate and regulation (e.g., Conformité 
Européenne, Food and Drug Administration, EU 
Medical Device Regulation) needs to be obtained 
and, then, the usefulness of solutions needs to 
be carefully evaluated in specifi c areas of usage. 
After this process is over, the use of these tools 
is clearly defi ned and established in routine work. 
The challenge starts when the machine ceas-
es to be a tool in the hands of radiologists and 
becomes their advisor, e.g., decision support sys-
tems based on artifi cial intelligence (AI).

AI describes a range of techniques that allow 
computers to perform tasks that require human 
reasoning and problem-solving skills [2]. AI is 
encapsulated in software for which advanced 
mathematical algorithms (e.g., machine learning) 
are implemented to automate work or support 
human decisions [3,4]. AI is not a new concept 
in radiology. Over the last 10 years (from 2010 to 
2020), over 6,000 original papers describing the 
implementation and use of AI methods in radiol-
ogy have been published (source: authors’ search 
with the PubMed engine). However, for radiolo-
gists, AI is a new tool that not only gives the radi-
ologist the content for interpretation but also tries 
to interpret this content for them. This fact revo-
lutionized common thinking about radiology tools 
and forced the radiologist community to redefi ne 
tools used in routine work, especially in legal and 
ethical terms. Indeed, in the last three years (from 
2017 to 2020) over 100 statements, editorials, 
review and commentary articles have been pub-
lished about ethical aspects of AI usage in radi-
ology (source: authors’ search with the PubMed 
engine). These papers focused on fundamental 
ethical aspects of diagnostics, as well as ethical 
issues connected to every step of the diagnostic 
process supported by AI. Neri et al. [5] empha-
size that it is the radiologist who is responsible 
for diagnosis, not the AI tool, designed to support 
it. Patients should always sign informed consent 

for their data to be used in this non-conventional 
way. The radiologist should know how to use AI 
tools. AI operating patterns should be transpar-
ent and as clear as possible and, fi nally, when 
using AI tools radiologists need to take respon-
sibility for the accuracy of the AI suggestion as it 
may bias their fi nal diagnosis. The European and 
North American multi-society statement [6] is 
one of the essential papers that describe in detail 
every step of the diagnostic process supported by 
AI. This multi-institutional report identifi ed three 
main areas of the process that require new regu-
lations. These are: data processing, transparency 
of algorithms and trained models and the rela-
tionship between patients and radiologists. While 
the statement answers "why" it is needed, Brady 
and Neri [7] tried to answer "how" to do it. Show-
ing the examples of how to resolve new challeng-
es, they pointed out and highlighted that the main 
challenge was to anticipate how rapidly evolving 
systems might go wrong or could be abused and 
to prevent these possible outcomes before they 
occur [8]. While establishing correct rules of prac-
tice for AI is a key to its proper implementation in 
hospitals, correct reporting in scientifi c reports 
should not be forgotten either. At the end of 2020, 
a consensus statement was published on report-
ing trials involving AI procedures [9].

This study is a retrospective review of origi-
nal articles published in the last three years in 
the fi eld of radiology assessing the methods of 
reporting information related to the usage and 
ethical issues of AI procedures.

Material and Methods

Literature search
An initial list of 4,301 items was generated by 
PubMed engine through the review of literature 
published over the last three years (from 2018 to 
2020). When analysing the number of publications 
during the previous ten years (from 2010 to 2020), 
we noticed that more than 65% of articles were 
published in the last three years; hence we decided 
to limit our analysis to this period. The search was 
performed on 20 October 2020 using the terms 
'artifi cial intelligence', 'machine learning' and 'deep 
learning' to identify published original articles for 
AI interventions in radiology. The search excluded 
review studies and statement or editorial articles. 
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The query box used during the search was: ((Radi-
ology) AND ((Artifi cial intelligence) OR (Machine 
Learning) OR (Deep Learning))) NOT ((Review) OR 
(Statement) OR (Editorial)).

In the next step, from the initial cohort, the 
PubMed engine built-in fi lter was used to extract 
51 clinical trials (CT) written in English. After 
reading the abstracts, we narrowed the list of 
publications to 30 CTs that focused directly 
on diagnostic or interventional radiology (we 
excluded articles where radiology was just a tool) 

[10-39]. These articles constituted the fi rst arm 
of the study. The second arm included 30 non-
trial (original) articles (OA) randomly sampled 
from the initial cohort of articles [40-69]. Figure 1 
shows the flow diagram that include each step of 
including/excluding process of the papers to this 
review [70].

Scope and method of analysis
The guideline published by Liu et al. [9] was 
used to develop the check list that was used to 

Figure 1. Flow of information through the different phases of review

Table 1. The set of items used to check the status of AI reporting in the analysed groups of articles

Item The scope of the assessment
Q1 The title includes information on AI or, in the abstract, the use of AI intervention within the study was clearly stated.
Q2 The AI intervention was adequately justifi ed in the context of the clinical pathway.
Q3 The inclusion and exclusion criteria at the level of input data as well as participants were stated.
Q4 Clear description of how the AI intervention was integrated into the study setting, including any onsite or offsite 

requirements.
Q5 Was the version of the AI algorithm stated?
Q6 Were patients informed and did they sign the consent?
Q7 Was data anonymization used and was the method described?
Q8 Were the data shared?
Q9 Description of how low quality or unavailable input data were assessed and handled.
Q10 Checking whether there was human-AI interaction in the handling of the input data, and what level of expertise was 

required of users.
Q11 Checking the explanations of how AI intervention outcomes contributed to decision-making or other elements of clinical 

practice.
Q12 How were potential harms described, i.e., description of any analysis of performance errors and how errors were identifi ed, 

where applicable.
Q13 Checking whether information was provided on how AI intervention and/or its code can be accessed, including any 

restrictions to access or re-use.
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assess accuracy, transparency and ethical issues 
of the AI reporting in specifi c parts of the article 
(Table 1).

Both groups (CT and OA) were independently 
scored for the items included in Table 1 by three 
observers: physicist (OBS_1), physician (OBS_2), 
and computer scientist (OBS_3).  The assess-
ment was made for each item on a two-stage 
scale (meet/fail). The Cohen’s Kappa coeffi cient 
was used to measure inter-observer reliabil-
ity. Separately for CT and OA, the maximum dif-
ference between observers' scores (MDO) was 
counted. The average percentage (AP) of the 
positive scores was calculated for CT and OA, and 
every item of Table 1. The results obtained for CT 
and OA were compared using Fisher’s exact test. 

Moreover, the relative difference between AP for 
CT and OA was calculated. 

All tests were performed at the signifi cance 
level α = 0.05, using XLSTAT software (Addinsoft 
SARL, New York, USA) in an MS Excel environ-
ment (Microsoft Corp., Redmond, WA, USA). 

Results

The analysis includes articles prepared ‘on the 
eve’ of the publication of Liu et al. guidelines 
[9]. Therefore, the criteria used to assess the AI 
reporting in the studied articles were not avail-
able for the authors of the cited studies at the 
time of publications.

Figure 2. Positive counts from three observers related to (a) clinical trial and (b) original articles. The value of Q8 for clinical trials 
(a) was zero for each observer. Abbreviations: Q1-Q13 – the items described in Table 1; OBS_1 – fi rst observer (physicist); OBS_2 – 
second observer (physician); OBS_3 – third observer (computer scientist)
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Figure 2 shows the scores granted by every 
observer for CT (Figure 2a) and OA (Figure 2b) 
groups. The highest MDOs was 4 (13%) for the 
CT as well as for the OA group.  While, in the CT 
group, these MDOs were connected to Q12 and 
Q13 items, in the OA group they were also linked 

to Q5, Q9, and Q11. The analysis of Cohen’s Kap-
pa coeffi cients (Figure 3) confi rmed the lowest 
agreement between observers' scoring for Q5, 
Q11, Q13. Small Cohen's Kappa value was also 
observed for Q4 where MDO's were relatively 
high (i.e., 7% for CT and 10% for OA). All obtained 

Figure 3. Cohen’s Kappa coeffi cients for agreement of the 
judges’ answers. Abbreviations: Q1-Q13 – the items described in 
Table 1; OBS_1 – fi rst observer (physicist); OBS_2 – second ob-
server (physician); OBS_3 – third observer (computer scientist)

Figure 4. Averaged positive counts for the groups of clinical trial and original articles. Abbreviations: Q1-Q13 – the items described 
in Table 1. Red asterisk: statistically signifi cant difference between scores granted to clinical trials and original articles

Table 2. The maximum differences between observers’ scores 
and the relative difference between the average percentage of 
the positive scores for clinical trial and original articles groups. 
Statistical comparison performed by Fisher’s exact test on the 
signifi cance level equal to 0.05

Item MDO |APCT - APOA| Fisher's 
exact testCT OA

Values in numbers and (%)
Q1 0 (0%) 1 (3%) 2% p = 0.621
Q2 0 (0%) 0 (0%) 0% p = 1.000
Q3 2 (7%) 1 (3%) 18% p = 0.007
Q4 2 (7%) 3 (10%) 2% p = 0.767
Q5 2 (7%) 4 (13%) 4% p = 0.433
Q6 1 (3%) 0 (0%) 15% p = 0.028
Q7 2 (7%) 1 (3%) 9% p = 0.244
Q8 0 (0%) 0 (0%) 3% p = 0.246
Q9 3 (10%) 4 (13%) 1% p = 1.000
Q10 3 (10%) 3 (10%) 31% p < 0.001
Q11 2 (7%) 4 (13%) 3% p = 0.497
Q12 4 (13%) 4 (13%) 2% p = 0.881
Q13 4 (13%) 4 (13%) 10% p = 0.104

MDO - the maximum difference between observers' scores; CT - 
the group including Clinical Trials; OA - the group including Original 
Articles that are not CT; AP - the average percentage of the positive 
scores
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Cohen's Kappa values ranged on the scale pro-
posed by Landis and Koch [71] from "fair agree-
ment" to "almost perfect" level. 

Table 2 shows detailed information of the 
MDOs in the CT and the OA groups, the relative 
differences between the average percentage of 
the positive scores counted in CT and OA, and the 
statistic results of CT vs OA comparison for every 
item from Table 1. 

Figure 4 shows the AP of positive counts for 
the CT and the OA. The results lower than 50% of 
the passing checks in both groups were noted for 
fi ve items - Q7, Q8, Q9, Q12, and Q13. While for Q3, 
Q6, and Q10 the passing checks were above 50% 
(ranged from 58% to 88%), the AP counted for CT 
and OA differed signifi cantly among themselves 
(Fisher’s exact test performed at α=0.05) (Table 
2). The highest passing checks (> 90%) with 
smallest differences between CT and OA were 
observed for Q1, Q2 and Q11.

By analysing the items, we noted that only for 
Q7 and Q8, the passing checks were higher for OA 
than CT. It should be noted that the Q8 item was 
scored as incorrect with only one article assessed 
as meeting those criteria.

Discussion

The checklist proposed by Liu et al. [9] puts for-
ward important criteria for safe and effective inte-
gration of AI into clinical practice, defi ning clear 
criteria of study design, data management and 
patients' rights to privacy. The criteria list used to 
score the articles, presented in Table 1, was based 
directly on the checklist of Liu et al. and contains 
all the key criteria presented by them. Although 
not validated yet, such proposal is a good starting 
point for future guidelines for authors and editors, 
regarding minimal standard criteria for publica-
tion of studies integrating AI tools. The assess-
ment criteria used were not published at the time 
of publication of reviewed articles. Therefore, the 
results of our study should be interpreted as an 
indication of areas where the authors of future 
AI articles should put higher attention, based on 
published Liu recommendation. 

Most of the reviewed studies, as expected, 
clearly stated their use of AI methods and, more 
importantly, almost all tried to address relevant 
clinical questions (Q1, Q2). Although in most of 

the studies patient inclusion and exclusion crite-
ria were presented, they lacked widespread rigor-
ous descriptions of the study design (Q3, Q4, Q10, 
Q11) apart from a detailed explanation of the AI 
approach itself (Q5). These concerns fi t the broad-
er discussion about transparency and reproduc-
ibility in AI research which includes reporting of 
data selection and flow. Additionally, using data 
collected in routine clinical practice - as opposed 
to highly curated datasets, e.g. from clinical tri-
als - can produce the ‘garbage-in, garbage out’ 
phenomenon due to low quality or missing data 
points, creating the risk of wrong clinical decision. 
Unfortunately, this problem is rarely addressed in 
the reviewed publications (Q9).

A small discrepancy in the evaluation between 
a clinical observer (OBS_2) and a technical-sci-
entifi c observer (OBS_1, OBS_3) for the items 
(Q9, Q10, Q11, Q12, Q13), do not change the fi nal 
assessment of the quality of the articles ana-
lyzed. Rather, a possible hypothesis for future 
research studies is that different level of percep-
tion of ethics among different observers could 
have an impact on patient data and study man-
agement when applied to clinical use. 

Another important part of every study pro-
tocol is informed consent of the participants 
(Q6). Many studies reported that local Institu-
tional Review Board (IRB) had waived patients' 
consent. It can be understood when the study 
uses retrospective data but for prospective tri-
als, even when images are the only subject of 
research, such consent should be mandatory. 
Very few of the chosen studies provided informa-
tion about anonymization of data and process for 
safe sharing (Q7, Q8). The discussion regarding 
data ownership is still ongoing, and it is not clear 
who should be responsible for the evaluation of 
trade-off between the potential benefi t for future 
patients and privacy concerns when patient data 
is released. Is patients’ consent needed for shar-
ing their data publicly or with non-medical com-
panies or is IRB judgement suffi cient? With the 
increasing involvement of non-medical technolo-
gy companies like Google or Facebook in health-
care and the associated quest for sensitive medi-
cal data, these questions will become even more 
relevant in the near future [72,73]

Only a few studies explore the patterns of 
incorrect predictions by the proposed AI tools 
and possible reasons. Such analysis is impor-



Journal of Medical Science 2021;90(2) 117

tant for the evaluation of model performance as 
every error carries a potential cost and risk for 
the patient and the clinician who is fully respon-
sible for the decision made or augmented by an 
AI model (Q12).

To gain the trust of clinicians, AI tools designed 
for use in clinical routine should be robust and 
transparent. Studies proposing these tools must 
be transparent and reproducible. According to 
2020 State of AI report [74], only 15% of AI stud-
ies made the code used to train and validate 
the proposed models publicly available. This is 
clearly seen in the set of studies included in this 
review as only fi ve (5%) of them are accompanied 
by an open-source code and metadata (Q13). The 
international research community have recent-
ly raised a concern about the replicability of AI 
research regarding a publication on an AI tool for 
breast cancer diagnosis built by Google research-
ers with no open access to the code [72]. In their 
comments, the authors argue that sharing key 
materials, like code and metadata, would allow 
verifi cation of results by other scientists. Without 
this, published results are rather like a "promo-
tion of closed technology" [75]. 

Conclusion

Recommendation on how to report results of stud-
ies with use or development of AI tools are impor-
tant and should be implemented by authors and 
editors to increase robustness and replicability of 
their work. The review shows that authors of stud-
ies using AI tools should put more emphasis on the 
accurate description of the study design to increase 
transparency and reproducible of their works.
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