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The e�plosion of interest in photodynamic ther��plosion of interest in photodynamic ther�
apy (PDT) at the end of the last century to treat 
cancer and other diseases was based on the 
promise of localised treatment, cheaper thera�ised treatment, cheaper thera�d treatment, cheaper thera�
py and fast ablation of the treated organ. Many 
authors reported successful application of PDT 
techniques in vitro [1–6], but in vivo, PDT has 
been investigated to treat different diseases 
mostly when light can be easily delivered [1, 7–9]. 
Currently PDT is used mainly in dermatology, and 
in the treatment of glioblastoma and mesothelio� and mesothelio�mesothelio�
ma, and some efficacy of this modality has been 
demonstrated [10]. One of the most attractive 
features of PDT is that it can evade cancer resis� of PDT is that it can evade cancer resis�
tance to photosensitisers [10–13]. However, one 
must consider that this is a comple� mechanism 

involving many factors such as the diverse light 
and o�ygen distribution in the treated organs, 
which has mitigated application of this technique 
in clinical practice [14]. 

PDT for cancer depends on the absorption 
of a photosensitiser within the malignant tis�iser within the malignant tis�r within the malignant tis�
sue. The photosensitising drug is then activated 
by light (usually from a laser) and the active drug 
destroys the targeted tissue. There are four major 
components of photodynamic therapy: light, pho�
tosensitiser, o�ygen, and the tissue characteris�iser, o�ygen, and the tissue characteris�r, o�ygen, and the tissue characteris� the tissue characteris� tissue characteris�
tics of the treated organ. 

Light
The light used for PDT is usually in the wave�
length range of around 600–800 nm, and is called 
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the therapeutic window. Light in this range has 
the right energy level (�1.5 e�) to e�cite the pho� energy level (�1.5 e�) to e�cite the pho�
tosensitiser, and is a wavelength that ensures 
sufficient penetration into the tissue [15]. Higher 
wavelengths offer better tissue penetration [16, 
17]� thus� some authors defi ne a therapeutic win‑� thus� some authors defi ne a therapeutic win‑hus� some authors define a therapeutic win‑a therapeutic win�therapeutic win�
dow up to 1000 nm, however some light absorp�
tion by water in the range above 900 nm must be 
considered as it will limit tissue penetration to 
some e�tent [18]. 

Photosensitiser
Quinones and porphyrin derivatives which absorb 
light in the therapeutic window are most fre� in the therapeutic window are most fre�
quently used in photodynamic therapy [19]. The 
photosensitiser should preferentially accumu�hotosensitiser should preferentially accumu�iser should preferentially accumu�r should preferentially accumu�
late in cancerous tissue (at least twice as much 
as in the surrounding tissue) [20]. Sometimes, to 
increase the concentration in the PDT target, the 
photosensitisers are conjugated with an antibody 
specific to the cancer cells to increase drug �uild‑to the cancer cells to increase drug build�cancer cells to increase drug build�
up [16]. Upon being irradiated with a low�power 
light and absorbing photons, the sensitised pho� the sensitised pho� sensitised pho�ised pho�d pho�
tosensitisers in the presence of o�ygen produce 
several radicals and reactive o�ygen species 
(ROS). Among them, singlet o�ygen is the prima�, singlet o�ygen is the prima� singlet o�ygen is the prima�the prima�prima�
ry active specimen causing necrosis in the treat� the treat� treat�
ed organ [19, 21]. 

tissue characteristics
The two parameters of greatest importance in pho�
todynamic therapy are the attenuation coefficient 

(a�sorption and scatter coefficient of light within 
tissue), and the critical fluence (minimum energy of 
light needed to kill cancerous tissue). Both depend 
on the concentration of the active drug within the 
tissue. The distri�ution of light energy fluence φ1 in 
J cm�2, around a cylindrical fi�re, placed in a highly 
scattering medium, such as cancer tissue, is based 
on the diffusion equation:

φ1 = φo exp (‑r μeff)

where: φo is the energy fluence at the light source, 
μeff is the effective attenuation coefficient in cm�1 
that describes the absorbing and scattering 
properties of the tissue, and r is the distance from 
the delivery fi�re in cm [17]. This e�uation is suf‑re in cm [17]. This equation is suf� in cm [17]. This equation is suf�
ficient to calculate the e�tent of treatment, as can 
be seen on Figure 1.

computer simulation
This represents the ideal situation. In reality, light 
distribution from light diffusers is not cylindrical 
and the tumour is not cylindrical in shape either. 
This requires the three�dimensional shape of 
the tumour or treated organ to be obtained. For 
e�ample, in the case of prostate cancer, the pre�, in the case of prostate cancer, the pre� in the case of prostate cancer, the pre�the case of prostate cancer, the pre�case of prostate cancer, the pre�, the pre� pre�
ferred treatment is to ablate the entire organ [22]. 
In this case, a three�dimensional model can be 
constructed from two�dimensional ultrasound 
images, including the positions of inserted light 
sources, as can be seen in Figure 2. Moreover, 
having multi�sensor probes, the spatial distribu�, the spatial distribu� spatial distribu�
tion of the optical properties can be measured. 

Figure 1. PDT computer simulation. Cross‑section of imaginary cancerous tumour with (blue line) 6 light diffusers inserted into 
the tissue. The red areas represent the minimum light fluence required to effectively activate the drug and consequently ablate the 
tissue. Each successive colour band denotes isosurfaces of 10 times lower light fluency. Left picture: Not all cancerous tissue was 
ablated as the yellow colour inside the tumour indicates 10 times lower fluence than is needed for therapeutic ablation. Right picture: 
The red area filled the entire tumour cross‑section when the critical fluence was smaller, or the time of treatment or light power was 
increased [20]
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Uneven distribution of the photosensitiser 
within the treated organ is an additional com�the treated organ is an additional com�treated organ is an additional com�
plication of PDT. For e�ample, we analysed the 
spatial distribution of a photosensitiser (tin etio�a photosensitiser (tin etio�photosensitiser (tin etio�iser (tin etio�r (tin etio�
purpurin dichloride (SnET2) encapsulated in lipo�
somes) in a canine prostate and found that its 
concentration varies �etween 1 and 2.5 μg of 
SnET2 per gram of tissue (Figure 3) [17].

The fluctuations of the photosensitiser with�s of the photosensitiser with� of the photosensitiser with�the photosensitiser with�photosensitiser with�iser with�r with�
in the treated organ can result in variation of the 
therapeutic PDT effects [21, 23]. Thus this param�
eter can be quantified by measuring the absorption 
of light between the light diffuser and segments 

of multi�sensor probes in a wavelength charac�a wavelength charac�wavelength charac�
teristic of the individual photosensitiser. The tis�of the individual photosensitiser. The tis� individual photosensitiser. The tis�iser. The tis�r. The tis�
sue’s optical properties are influenced not only by 
the concentration of photosensitiser, but also by 
o�ygenation of the blood, which can be measured 
in a similar way. Moreover, the amount of o�ygen 
changes during photodynamic therapy, and the 
amount of photosensitiser changes as a result 
of consuming o�ygen and the process of photo� the process of photo� process of photo�
bleaching. To account for these interactions, in 
addition to all of the parameters described above, 
a dynamic model of the photodynamic process is 
required to predict therapeutic tissue damage [15].

Figure 2. Left picture: Transverse ultrasound view of the prostate model showing the location of the laser diffuser and multi‑sensor 
probes for fluence rate monitoring (white marks). Right picture: Model of the prostate based on transverse ultrasound images. For 
clarity, the base and apex of the model were “cut”. The glowing red rod represents the light diffuser, and the three other rods represent 
multi‑sensor probes for fluence rate monitoring

Figure 3. Left picture: Two‑dimensional distribution of SnET2 within a canine prostate. Right picture: Three dimensional distribution 
of photosensitiser. Both images show the highest concentration of the drug in the peripheral regions of the gland [17]
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Complete ablation will depend on precise 
placement of the light sources in the affected 
tissue, and the delivery of a therapeutic light 
dose. This will depend on a sequence of events: 
acquiring a three�dimensional tumour model, 
simulation to optimise the placement of the light 
sources, interstitial placement of the light sourc� the light sourc� light sourc�
es, measurement of the above parameters of the 
treated organ, PDT computer simulation, evalu�
ation of the treatment model and adjusting the 
parameters if needed� and finally executing PDT 
treatment based on all of these preparations. 

PDT is not a simple treatment that can be done 
by eyeballing. It is a procedure that requires pre�. It is a procedure that requires pre� procedure that requires pre�that requires pre�requires pre�s pre� pre�
cise planning, which can be done with the help of 
comple� computer programs [24–31]. Computer 
simulation of PDT to optimise treatment depends 
heavily on intense calculations in all steps of this 
procedure, and desktop computers are only now 
sufficiently powerful to assist physicians dur‑ly powerful to assist physicians dur� to assist physicians dur�assist physicians dur� physicians dur�s dur� dur�
ing therapy in real�time, to enable this therapy to 
treat a broad spectrum of malignancies.
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